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INTEGRAL CONSTRAINTS ON THE CONTROLS IN AN ENCOUNTER GAME* 

G.K. POZHARITSKII (deceased) 
(**I 

The players /l/ have, in three, motors of different constructionwithnoninterchange- 
able fuels. The first motors have, in mathematical notation, "geometric" constraints, 
the second, "power-integral" constraints, and the third, impulse constraints. The 
payoff is a prescribed function of position at a fixed termination time. Theproblem 
includes as a special cases the game of one motor of any type against any of the 
three types. 

It is assumed that the problem's singular sets are concentrated in a plane relative to 
which the game has symmetry. Functions of two finite-dimensional vectors and the maximumwith 
respect to the second vector's components of the minimum of the function with respect to the 
first vector's components have been constructed. Conditions have been ascertained underwhich 
the maximum constructed is the game's value. In the first example two points in a central 
field play on the absolute value of the difference of polar angles. In the second, a general- 
ization of the Littlewood problem, a man on the boundary of a circular arena plays withalion 
(the payoff is distance). In eight subcases the value and the best controls have been con- 
structed for all positions. 

1. By p@) we denote a k-dimensional space: the integers i = 1,2, j = 1,2,3 (i is the 
player's number). We introduce the vectors and numbers 

.zi E p(2) t Pi = (Pi. tr Pt,at Pi, 3)r Pirj E PC’) 

YE = (Vi, 1, X’s, 2, Yg, s)y Yi,jE$‘), Ei, j = I Yf, j !, ‘6 E PC” 

ui = (Uf, Ir =i, 23 uf, 3)) ui. j E P’“’ 

.-c(f) = (Q, pi, vi, T), s = (z(l), sq, u = (f+, u2) 

The vectors z; are the players' geometric coordinates, the numbers Ui,f axe the resources of 
the players' controls Pi, j. The auxiliary sets 

u% f tzl = t”f I I %, j I -S Ei. jl-j! Elf, j 1 for j = 1, 2, 3); 

V8 = Ve,, x V&2 

form the basic sets 

We specify the continuous second-order square diagnonal matrices Ai (r) and we write out the 
equations of motion 

zi' = cut, t (ziy 7, ui, 17 ut, d + Ai (2) ut, 3 

pi.; = IL<,%’ -t ui,e2 = p’s* 3 + I uj, 3 I = 0, z’ + 1 = Vi‘ = 0 

We let the functions ~p~,~(x, n)h ave continuous partial derivatives. The adjoint vector 

P = (PI9 PZ), Pi = (Pz, it Pa, ir PV, ir P4 

has the dimension of vector 5. By {x} we denote the space of positions, X~ = (zl, pl,zz, pz) ,and 
we consider the vectors mI E {x}, z0 = (zl, z). The functions 

% (%) = (%1 f%)> UE.2 (%I)) E VF? (I) 
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are continuous in x7 and measurable in z ; also ug, i (z,,)E u,,i (z). We combine them into the 

sets Uk, jr Ug. We introduce the sets & (Z&E (x) and, in addition, 

EC (51) = {z 1 I z - 21 ! - E < 0) C Ei (51) 

We construct the sets 

We prescribe 

and we construct the motion s(t) of set w~,~, satisfying the following equations. Thesequence 

(tj, Xj E 5 (tj)), ZI = TV (tl), t, = 0 
corresponds to the equalities 

t I+* = id {t ! (t > tj, 5 (t) 5 Ei (Zj)) V (t > tj $ I)} 

while the absolutely continuous function .r,,((t) corresponds for almost all t corresponds to 

the equation 
3.; (t) =: e,, i (Zj, I, (t)) for t E Itj, tj+ll 

The motion exists for any set wl,i. We specify the payoff r(x) and we compute 

xv (L'l,i) T {G (t) I u&,j E uc,j~ i # i) 

r, (U,,i) = (-I)‘+’ (sup (-l)'+'r (z, (z)) along I, (4 E x, (%,A) 

bi (5,) = (-I)'+' (inf TV (%i) along (Vi E vi, E > 0)) 

lim ru ({x,, cO,i (z&)) as e + 0 = bi (q) 

(b,(x) is the first player's game value u,,~(zJ is his best strategy). The problem is posed 

analogously for the second player. 

2. The letters f,w,u,ru, y,h,i,q, c,o,e and capital letters will be used to denote sets. 

If a letter in a list has a letter subscript, and there is a figure one after the subscript, 

then this is a scalar or a vectorial function. We specify the set 

% = I&,,. %,*} 

w a.1 = c (Y, u) E p('); WC&z = %,a.1 x WP, 2, &!2, i E ui (4 W 
I I 

wajl*. j = {Uj ! u E Wa, 2) 
Jj) 

a.2.i = i”i I &‘2. j (YY Ui) # 9) 

we compute the operators fl(w,) (minimum) /i(Q) (maximum) 

The operators fi (U&J 

fi, 1 (4 = fi (4 for 
fi,j (Wz) = fi (fj (%)). 

ft (Wa) = {Wi,a,l, wi,a,2} = W,a 

(0 (i) wi. a, 2 = wt. a, 2.1 x wi, a, 2, 2 

Wi,a. 1 = (F-1) i+l inf (-I)‘+’ Cwa.t (Y* u, along ui E wky~,i (y, Uj)) 

2:. 2. i = t”i I WI, a, I (Yv Uj) - Wm. 1 (Y, U) = 0, U E Wa, 2 (Y)} 
I 

1.a.2.1 = df2, j (Y) 

for w,,~E {p) (the set cp(z)~ p is defined below) and the operators 

w,,,c I& = {t ( t> 0, t E [O,T]} are defined by analogy. The operators 

To the functions 

c (y) E p(l) h = pe (I, u) 

h, = a (YT u) I 3Y0, Y = (P, 4, Y0 = (-2, P) 

correspond the operator 

fu (c (Y)) = (lim (t-' (C (Y + &t) - c (Y))) as t+- + 0) = B,(Y, u) 

We write the sets 
X = {x ! pi,j > 0 for i = 1, 2, j = 1, 2, 3) 

pi, 6 = Pg, i = (Pv, i, I? Pv. i, 2) 
pi = {Pi I I Pz, i I > O* (Pr. i. j tmi)’ > O 
for i = 13 27 3), I pE.i I < Pi.31 
cp (5) = P = P, x Pz, y = x x P 3 y, 

PE = (pt. 19 PE, 2) 
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Let 
Ye = {y I Pt = 01 n Y7 WC = 12.1 ({h (Y> 4, UC (4)) 

We assume that the equation 

Y' = e,(y) = {ah (y, uPyO I u E w (Y)} 

admits, for y, (y, 0) = y E yC , of a unique absolutely continuous solution Y,(Y, t). We compute 

YG 1 (Yt t, = Yc, 0 (Y9 t, for Pi, 3 = Pg. i 

Y,,, (Y, 4 = lim Y,,, (Y, 0 as s--f 0 
We use the notation 

as (Y) = x, a,, i (Y) = 02, i (2) = zi 

%, i, i (5) = a,, i,i (Y) = Pi.j7 aT (X) = + 
%. I, i (Y) = Pr. ir %. w. i, i (Y) = Pu, i. f* a, (Y) = z 

etc. and in this notation we prescribe the vector Yt,(Y, t) by the equalities 

%, i, j (Yb) = Ei, 17 %, i, 3 (Yb) = Pi, 3 - I PE, i ! + %. i, 3 (Yc. 1 (Y7 t)) 

a0 (yb) = a0 (Y,,, (Y, t)) 

The notation %I (Yb) = a0 (Y,,,) signifies the coincidence of the remaining componentsofvectors 

Yb, Y,, 1 - The motions yb(y,t) are the foundation for the construction and have two or fewer 
jumps. We construct the sets 

Ui,6 = {“i, 3 ( I ui,3 ! = ! PE, i !7 u E wc,2 (Y)} 

U6 (Y) = U,,a x Uz,a 

Y6, i = {YII Pi, i I > 0, Ui.6 (Y) f @)I Y6 = Y6.1 U Y6.1 

The set 
vcz = {ccz (Y), Yu (Y, 4, Ya) 

consists of the function c,(y)E p(l) of the vector y,(y,t)E~ and the set yaC y. Weconstruct 

%X (4 = {t I Y, (y, t) F y=}, t, (vJ = inf 0, (va) 

Ya (VA = Ycz (Y, & (va)), c, (UGL) = 6, (y, (va)) 

8, (Qz) = {t I t E [O, t, (l&)1} 
If &=cD, then ta=ca=co. 

Now for the set 
't = ('9 y&l (y, t)! ?,\ Y6) 

we compute t, (y) = t, (Vt), y, (y) = y, (Vt). We construct the vector y6,i (y), i.e., the result of 

the jump y+y6,i(y) 

'2, i (!f6. i) = zi f Ai (‘J) Pk. i, ap. i,s (y6. i) = Pi, s - 1 PC, t 1) ap,t, i (Y,5, i) = 0 

‘&I (y6,i) = a, (y) 

Yi.b (Y, t) = lim yb (y, t + t,O) as (-l)$O+ + 0 

Let YI (Y) E Ya,i \ y6.1, then TV (y) = t6,i (!h while the jump 

Y, + Yv, i (Y) = y6.i (Yl) for PE,i = u6.i (Yl) 
The function u6,i(y1) E U6,i (yr) is unique. The next jump is constructed by analogy. Such is 
the description of the motions yb(y,t). We write them out in greater detail 

Yb (Y7 t, = !h, b (Y? t) = Yl, b (Yp t) for t E 10, tl (Y)) 

Yb (Y? h (d + t, = Yb (YV, i (!,I (!.d), t) 

for t E IO, t, (yr (y)) etc. 

We describe the game's symmetry property by denoting z = zz,r - zl,r, a,(y) = z, yz(y) is a sym- 
metrical vector 

G?i,l (YZ) = -zi, Ir up,z.*,l (YZ) = -_Pr, i,l; C&I (y*) = CZ, (Y) 

We assume that the payoff function r(r)> 0 is convex in z and corresponding to the symmetry 
equation 

'('x (yb (y? t))) = r (% (yb (Yz (y), t))) 

for t E & (r). 
We shall reckon that the set 5" = (5 1 b,(s) = b,(x)= 0) is k nown and we shall carry the 

construction out for XE 5 = X\E6. Let 6~ X. We denote r'(6) = {y ! SE 6) n y. We consider 
the series of sets and operators 



To determine &= hl we compose the set 

66 (Y) = fv, / an (YJ = h,, % (YJ = @o (Yh a, z fY,f E v, l4F 

By p’ we denote the collection of single-element sets and we let I'" = {ZI IZ,=o). We assume 
that the motion yP(Yrt) begins with a jump 

Y-+ .Y@ (Y) = BP (Y) C Pi 
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three sets and we "glue" 

%,i = {&J,i (x), Ye,i (Y7 t)> si) 

6, = 6, u 6,; i = 1, 2, 3 

into the operators wl,e = f,(@,e, wl,e) for Ye,3 (Y, t) = Yg,z (Y, t), and we as well "glue" themotions 

Ya,i7 i = 2, I, obtaining the motion Ye.3 (Y, t). The set 

We = 1% 3 (4, Ye, 3 (Y, 4, 6,) 
and the motion Ye,3(y, t) are specified by the equalities 

L, i (Y) = 4~ (wi,e) 

Y3 = lim Ye,3 (Y, t - t,') as t,O --f + 0 

Y3,e (Yt t,' + t) = Yi.0 (Y3, t) 

for Y E hi, t E IO, t,, i (ya)), i = 1, 2 

These equalities uniquely determine the motion ~6.2 = Ye,3(y, t). To the set 

W2, fi = We, 3 = {a (WI,& Y&Z (Y? 0, Y1° (5,)) 
corresponds the function 

a, (x) = 0, x E E" 

%I (x) = al,6 (x)7 x E EL (W,,B) 

% (x) = aa (x2 (4) = a: (W&8) 

x E E& @LB) 

x2 (x) = % (Yz (5)) 

In a number of cases it turns out that the function a,(x) is a solution of the problem. 

3. We construct a verification scheme. We denote 

X6 ‘;“‘(= ;i.))(YLw (Ya, 1 (Y)))? Pa (Xl 4 = 
u aa x 

Wi,A = ft.1 (ii% (X7 u)7 U (X)1) 
AA, i = {x ! w~,A., 1 (x) (-I)‘+’ > 0) 

'%='Pb,lX ~PCT,ZY (PB,i={PE.*IIPE,iI~<i,3} 
wi,d = fi.j ({@II (x6 (Y)), cP6 (x))) 

Let &GE and let the function p,,(x, E,) be the distance of point x to the set 1,. We write 

out the sets and functions 

'.A. i (X) = Pa (G AA,& xb, i = 

~~I~i,6.2,i~P"=~~1121=o)} 

x6,i = {x 1 %i (x) = Pa (x, t \ xb,i) > E) 

up,i = O(x) for xCAA,~ 

up, i = {u I fu @A, i (4) = 0) fl U (4, x E A&, i 

The set 

C”j,t7, i = {Uj I u, E U,, i (X)} 

Ui,& i = I"i I uj,p,i (x> ui) # Is}) 

enables us to compute 
ID,, i = fi, 1 ((Pa (x9 u)3 Up, i (Z)}) 

The function u;,~ (x) E ui,o (x), where 

We assume that the function Ui,o (x) is continuous for xF A*,i, while the absolute value of 
the function Q,o,l (x) is continuous for all x. We consider the sets BA,< = {Z 1 rb i(z)_ F< 0) 
and the vector xl.j specified by the equalities 

%,i,h. (xl,j) = ei,k + (E<,h’2) (-I)‘, k = 1, 2, 3 

a0 Czl,j) = a0 (5) 

We write out the strategy-sets 
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L’,’ (4 === (q, ?” (q), E,O (zoj} 

Ei"(x1)=(51ZI,I (4-i B,,i) for ZlCEB, , 
Ei” (z,) ~~ (2 11 z - JI I - E < 0, .I’], 2 (z)‘E /IA, J, z, f f,‘, < 

The function UL,,~(~O) has been defined for XE Ei"(.r,) by the formulas 

We compute 

We investigate the set Uli" = wi for hi = uiO (z,,). We denote by C,, i (x1) the admissibility setof 

player j for Vi = ~~"(z,,) and we construct the set 

U', = {a, (z), I, IuJiO, 11, {.r / 7 - %I T 1/L> O)), ql lWiO, tl E X” ({% Ci” (%Jl) 

We can show the existence of the function Ci 6~) > 0 bounded for 2~ C,,i(z,) and corresponding 

to the estimate 

(-IP' (a,, (2, (w,)) - a, (4) < Ci (4 r/F 

This estimate permits us to assert that the equalities 

6, (1) ~~ (x) -T a, (z); L’~, i (2”) z= uoi (z,,), z,, E D, A D,, 

are valid in a set D,E j for which the inclusion xv Iu:~", IIED, follows from the inclusion 

.zl E D, for t,<T. Thus appears the verification plan. 

4. Let the points' masses tni = 1, gibe coordinate vectors, g; be velocities. The points 

are attracted to a fixed center with a force inverse to the square of the distance to the 

center. The control forces lLi" UL,~ -7 u~,~ $ IC;,:~. For uiO -: 0 the points move along an el- 

lipses in the plane L:‘. If the forces Ui"f (1, then they lie in this plane. By qi we denote 

the polar angles of the points Ii my (gi, gi). Let zi z- zi (li, a) be the first integrals of the 

linear equations of the perturbed motion closest to the ellipses of motion when ui : U, while 

zi (li, I)) .= $I. Let LLi,l", u~,~" be the projections of the forces onto the radius-vector rp,, and 

onto the transversal T~,~. We take the equations of motion in the form Zi = bi, 1 (T) I!;, 2 / 

bj,z (T) ZL~,~“. The control set is 

lJib : {U 1 u E 1’ (x), 6i" (T) = (bi,l (t), b;,a (T))]] Ui,j for i 1, 2, j 1. 2, 3) 

The parallelism condition for u~,~]] bi" is mechanically trivial. As a result the controlsU,,j 

can be made scalar and we can take the equations in the form 

Ui, j E {I('), U,i (r) 2 1 bi” (T) 1, Z,’ y Ui’Ui (T) 

IJe shall examine two problems and two payoff functions r1 (4, rz(z),r,(z)= ]z(; J; 

(Q - 2,); rz (J) _:: (mirr (]z ] - 2nk ] for li -~= 1, 2, .) 

We commence with the problem having the payoff r1 (4. The set 5," y {.z ) z > O,.LC jO}, while 
the vectors 

for i, j=l,Z 

q 3 (x, t) = 0 for t E fo, ti, d (T)) 

ci, 3 (5, t) z .i0 (T) for t E [ti, b (‘T), 

=z, i (Yb (Y? t)) = Pi, 1 ci. 1 (x2 t) + 
ei, b (Y) ci, 2 Cz> t, i PC, i ci, 3 (2, t) 

For x E Q (uJ,,~) the best motion f, (z, t) has the form 

Tl 
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2, (x7 4 = ax (yb (Y, 4) for 
P E 5% 2 (7% 8) E P’ 
2, (5, t) = uz (x, (I, u = 

(% (Yb (Yt 4) for&. i = Pi,3 
and for %, i = e,, i (x) = I/Pi,JCi,2 (x, ‘C)) when x E E 

We pass on to the analysis of the special sets Fit i = 1,2, . . . 

F, = {z ! 2 E La pz, 2 = PZ. 3 = 0) 
and we compute 

h (x) = ha (Y) for Pk, i = Pi,3r 
eb, f = e,, i (X), i = 1, 2 

In sets F,, 1, F,,, the set 

9% c-4 = 6% 2 b3. i) IT (P I I PN. i, 1 I = 1) 
for x E F,,: 

% (2) E P’ for I E F,” = F,, 1 IJ F,, 2 

ei, e (4 = 2 I ap, IL, i. 2 (cp, (4) I -I 

and the motion 

has been defined. For XEF,,, the motion x,(x, t) is unique; however, this follows from com- 

plicated computation rules and not from the essence of the problem. Furthermore,othermotions 

with the same result exist since the function a,(x) is independent of .z when xf!~ F,.,. BY B, 
we denote the whole set where &,(x)/& = 0. 

Fig.2 

t 
Fig.3 r,Z 

Fig.4 

Figs.l-3 show the curves Z, (xi, t) = a, (x, (xt t)). On .Fig.l (the case of PI,S = 0) the func- 
tion 6, (x) is a zero, with respect to the variableel,t,, of the function h,(Y). In the case 
at hand the minimum operation is not needed. The points X,,X~E F,,, of the motion z,(xj,t) are 
parired by the tangency condition (they are not unique). For x=F,,, the function s,(x) is 

independent of Z 

aa (x) = a, (x3) for x3 E {x 1 z = pa (z, F,,z) = 0) 

The sliding set 8, = (X )Z = 0, x E F,,,, Ye (x) = (cp, (x)7 x) E %.) t wice accepts the motions 
Z, (Xj, t) for Zj E FI,Z3 i = 1, 2. 

Fig.2 shows the case of Y.~,~= 0. We denote P3,e (x) = s&E. 1 (cp, (x)) i the set BV = {x 1 td,I(a) - 
T = 0, h,(x)<O, XEZ F,,,}. When xeeV the momentum pQle(x) is zero of the function h, (Y) in 
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the variable ~1,~. To the sliding set 8, = 0, 0 {z 1 P~,~(x) = 0) corresponds the motion X? (x 
t)and the control 

%3,e (x) = {m,,, I Bz (G u) = 0, m E WV2 (Y, @))I 

The set 8, borders on the two sets 

0 0.1 = Ix I z - t,, 1 (4 > 0) 
0% 2 = ix I h (Ye (4) = t (2) > 0) 

A transition with sliding onto the motion z@(-T, t)>O is accomplished on the boundaries G,i== 
fr8i of sets fro,,, /lB, . . We emphasize that the motion z,(z,t) can return again into set Bo. 
This return takes place smoothly (with tangency) through the boundary G,,, and by an impulse 

through the boundary G,,,. The set F,,. = {x Ix E F,, h,2 > 0, pL1,3> 0) is complex in that it 
contains the operation of minimum with respect to the variable P~,,,~, but has no principal 

differences from the sets shown in Figs.l,2. 
The set P, = {X 1 pl,* = P~,~=O} contains a dispersal surface /l/. We denote 

a,.0 (I, t) == (a,, B (2) for z = 0, z = t) 

w, 1 j2., ({a%, t), 0,)) 

a, (4 = w,, 1 (4, XT = aI. 5 (4 - a, (x) 
t, = T - inf 20, 2 

The result has the form 

aa (4 = al, g (4 for x e EC (w,, & = 
ix I x, (4 > 0) = A, 

a, (x) = a,(x) for I E B, = F, \ A, 

The set A, = {I I z > 0, X, (x) = 01, B,,, = B,\ A, is a dispersal surface. For XEB,,, the 

controls u,,*,( (z)-u,,~,~(x)= 0 for i = 1, 2 and the motion turn about arbitrarily in the set 

B,,, up to the boundary. In Fig. 3 the set B,,l is shaded (solution of the first problem). 

We turn now to the second problem for the case when the required unperturbed motions of 

the points are circular orbits with a common center. We construct the vector XC(X) (of the 

permutation of the resources and the origin O+n) 

% (xg) = 1 n - I z II, a,, i. j (q) = ~k.~; k # i, i = f, 2, 

We compute the functiin= I' 21 3 

B?.E (x1 = min (a, (2% I n - a, (xE (4) I) 
and the function B,,g = S!,,(x) for I zl<n, which has the period n in] z I.The function &,~(m) is 

the solution of the second problem. 

Typical motions of this problem are shown in Fig.4. The set B,,, is analogous to set B,. 

5. s uppose that a man z~,~= (cos0, sine) can move with velocity 8' = +E P(') along a circle 

of unit radius with center 0' at the origin of a fixed system z~o,o',z,o, while a lion zl,o EP(*). 

?,O = II, can move over the plane with velocity ul; in addition 

z2, O = (co5 8, sin O), z10 = (zl, 1, 21 ,2) = ZZ,O - -5,0 

The problem is very similar to the well-known Littlewood problem. We take it that ~1,~ = p2,3 

= 0 and we write out the motions ze(i, t) for +E~E . (ml,$ in the variables P?' = (z~,'~,I~,~) and the 

variables zlo= (z,,~,z~,J in a moving system. We write out 

ni (z~ t) = (Pi, 1 + VP- t, ai0 (2) = ni(Z, T) 

s, (2) = 2, (4 - zl, o = (cos (Q (z)), sin (n.2 (2))) - z,, o 

jn (5) = z, (z)i 1 2, (z)I, a,,,, o (s,) = (cos (n2 (5, t)), sin (4 (5, t))) 
a*, 1, o (4 = zl, o + nl (x3 0 in (4 
%,e = (a,,,, 0 (49 a,, 2, a (4) 

The set E,(m,,o) and the functions h=(y),h,(~) play an analogous role in the construction. We start 

the analysis with details. 
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The angle v is counted counterclockwise from the vector % up to the straight line 2,' drawn 

from 0' to the man. For z E QI,1 U aI,, the motion z,(z, t) is unique. The motion z~,~ (~~0 for 

QE CI,,~ is shown in Fig.5. 

8 
Fig.5 

Fig.7 

Fig.6 
Fig.8 

A deformation of the motion is connected with sliding over the set eo. The lion's slid- 

ing is rectilinear in the moving axes, one of which is the axis Zs', and curvilinear in the 

fixed system. The motions Z0,e (5, t) for Ql x2. z1 5 QI, 1 have the lion's rectilinear trajectory. The 

motion Z0,e (z. t) for 15 E %,3 has the lion's rectilinear absolute trajectory directed toward 

the point ~)'until z,,,(s,t)~Q,,,,. This segment a,,O' is shown in Fig.5. Fig.6 corresponds to 

motions in the moving axes Z,', O', Z,'. The set 

Q.2 = (5 I&,* = 0, 22 E 5) 
The motion z~(.z,~) for 

3: E %,I = (5 I he (4 ho} n Q’p 

have been described at the beginning of the example. When 

= E %, 2 = (5 I A, (5) < 0) n cD, 
the typical motions shown in Fig.7 appear. The point 0" is the point of absolute minimumwith 

respect to 2" of the function ~~,~(z). Then the points z1,z2,z3 lie to the right of point O".The 

motion Z, (z, t) in the moving system Z,', O',Z,' leaves the symmetry axis Z,' and returns to it 

aqain. 

The set 
% = (x I tt*, 1 = 112.1 = 0) 

picks out the set 

corresponds to the second player's zero control u~.~ = 0 .For Y E y3 the motion Q, (y:t) = a, (yb (y, t)), 

the symmetry axis is fixed. We compute the operators 

58 = fz,t &,I (5b (YI t)). Oz @))) 

56 = fz, 1 (IL@, , (Y)> (P IP E Y31)) 

and we construct the sets and the functions 

The fOrmUlaS writtenoutgivethe answer when 3~ m3. The motions are shown in Fig.8. 
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