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INTEGRAL CONSTRAINTS ON THE CONTROLS IN AN ENCOUNTER GAME"

* %
G.K. POZHARITSKII (deceased)( !

The players /1/ have, in three, motors of different constructionwith noninterchange-
able fuels., The first motors have, in mathematical notation, "geometric" constraints,
the second, "power-integral" constraints, and the third, impulse constraints. The
payoff is a prescribed function of position at a fixed termination time. The problem
includes as a special cases the game of one motor of any type against any of the
three types.

It is assumed that the problem's singular sets are concentrated in a plane relative to
which the game has symmetry. Functions of two finite-dimensional vectors and the maximumwith
respect to the second vector's components of the minimum of the function with respect to the
first vector's components have been constructed. Conditions have been ascertained under which
the maximum constructed is the game's value. In the first example two points in a central
field play on the absolute value of the difference of polar angles. In the second, a general-
ization of the Littlewood problem, a man on the boundary of a circular arena plays with a lion
(the payoff is distance). In eight subcases the value and the best controls have been con-
structed for all positions.

1. By p®™ we denote a k-dimensional space: the integers i = 1,2, j=1,2,3 (i is the
player's number). We introduce the vectors and numbers

2 €0, i = (B, Pip Bi g Ry EPW
vi= (Vi1 Via Vigh vigeeW, gy = vyl Tep®
#y = (g, Y2, Ug,8)r Ui, 5 & o
2l = (z;, py, vi, ) 7= (@D, 20), v = (uy, uz)
The vectors z; are the players' geometric coordinates, the numbers u; ; are the resources of
the players' controls Mi ;. The auxiliary sets
Ue, i () = {us Vw5 | oo 7y [ forj =1, 2, 3}
Uy = Ua,l X Us,z
form the basic sets
Ui =(U Ue,: along v)DuyuesU=U, X Uy
We specify the continuous second-order square diagnonal matrices 4; (T} and we write out the
equations of motion
2= Qg (3 Ty Uiy Uipo) Ay (1) Ui g
Bit =Py o F il = Wiy lu =017 +1= vy =0

We let the functions g, ;({z, u) have continuous partial derivatives. The adjoint vectcr

P = (Pi: p2)y Pi = (Ps,ir Pu.v» Py, o> Po)
has the dimension of vector z. By {r} we denote the space of positions, ¢ = (2;, Wy, 23, Wp) ,and
we consider the vectors z; & {z}, 2, = (z,, ). The functions

ug (20} = (ug,1 (30}, g,z (20)) & U (2)
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are continuous in #; and measurable in 7t ; also u ; (39) & Ue ; (). We combine them into the
sets Uy, Ug. We introduce the sets , (z)) & {z} and, in addition,

Es(zl)Z{l‘le*%!—8<0}C§i($1)

£ e = g, - gy &; = I .
We construct the sets or 1 B vils & (@) & Ve

vy = {VE,, i {20), & (11)}» w; = {ug (z0), & (z,)}
v, = {z, v}, wy; = {x,, wi}, Vi=Ug; X Vg ;

We prescribe
P Wy i Oy, g (1‘1, I) =€ (l, ug (ZO))

and we construct the motion z,(f) of set w,;, satisfying the following equations. The sequence

(tﬁ Tj == Iy (tj))v Iy T Xy (tl)v 4 = 0
corresponds to the equalities

i = inf{t [ (>t (D E @)V (> + 1)

while the absolutely continuous function uz,(f) corresponds for almost all ¢! corresponds to

the equation
.1'1.‘ (f) = €y, i (Ij, I, (t)) for te= [t]', t]'+l]

The motion exists for any set w;; We specify the payoff r (z) and we compute
Xo ) =z (W Y ug,; & Uy, F#0)
me (0y,1) = (—1)*! (sup (—1)*'r (2, (1)) along 7y (1) & X, (v),1)
bi () = (—1)" (inf r, (v, along W, EV;, ¢ >0)
lim r, ({xy, vo,: (29)})) a5 &— 0= b; (2)
(b, (%) is the first player's game value v,, (z,) is his best strategy). The problem is posed
analogously for the second player.
2. The letters f,w, v, w,y,8,E 1, §, 0,0 and capital letters will be used to denote sets.
If a letter in a list has a letter subscript, and there is a figure one after the subscript,
then this is a scalar or a vectorial function. We specify the set
Wo = {Wa, 1> Wa, 2}
Wa,1 = ¢ (¥, u) & pW; wq » = Wg,)‘z.l X Wsz],)z.zw wg,)z,i e Ui (2)
“’of.)mj = {u; | u € wg, o}
Wi s = {wi | wls s (¥, u) %= 2}

We compute the operators fi(Wy) (minimum) f; (W) (maximum)

fi (we) = {wi,a,ly wi,a,z} = Wi, o

Wi o, 5 = wff’a,z,l X w?’)a, 2,2

Wi g1 = (—1)"* inf (—1)"! (Wa,1 (¥, ¥)  along u; & wf,‘) 2,1 (Ys uy))
(i)

Wila, 0,0 = {Ui | Wi a1 (U Uy) — wa 1 (¥, ) =0, & wy,, (¥)}

w25 = wds ; (y)

The operators f; (w,) for We» & {p} (the set ¢ (z) > p is defined below) and the operators
fit (wo) = £ (we) for we T8, ={t|t>>0,t &(0,1]} are defined by analogy. The operators
fis (we) = f; (fj (wa))- To the functions

c(y) = pW h = pe(z, u)
hy = 0k (y, u) | 3y°, ¥y = (p, x), ¥° = (—=2, p)
correspond the operator

fule () = (lim ¢ (c(y +hst) —c(y)) as t—+0)=p(y, u

We write the sets

X={z\py;>0fori=1,2j=1,2,3}

Wi, = P51 = (Pv.i,10 P, i,2) _

Pi=Api 1P, e | >0, (pui,; (1) >0

for j =1,2,3), | pe: | < pus}

px) =P =P, X Py, y=X XP=Dy,

pr = (P, 1) Py, 2)
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Let
Y= 1P =0 Ny we =fo1 (b (¥, w), Ue (@)

We assume that the equation

¥ = e (y) = {0h (y, WY | u & w,s ()}
admits, for y,(y,0) = yey,, of a unique absolutely continuous solution VY. (¥, ). we compute

Yo, 1 (Yo 1) = Ye, 0 (¥, 1) FOT ;4 = py 5
Ye,0 (4, 1) = lim yo, 4 (y, t) a5 e—0
We use the notation
Ay (y) =X, 8 (y) = Qg (1) = z;
3,3 (0) =@y i (Y) = Wi, jr @ (z) =7
ap,2, i () = Pzis  Qpop, 1,5 (y) = Puiip a(y)=-r

etc. and in this notation we prescribe the vector U (¥, 1) by the equalities
Qe i, i () = €15y a5 (Us) = Mia— 1Pe i |+ @uis (We,, (5, 1)
Qg (yb) = (chi (y1 t))
The notation o (¥s) = @0 (¥.,1) signifies the coincidence of the remaining components of vectors

Yps Yo.1- The motions ¥ (¥,!) are the foundation for the construction and have two or fewer
jumps. We construct the sets

Uio = {u, sl uia L= 1pg i |, weE w5 (3)}
Us () = Uy s X Us,s
Yoi={yllpe: 1 >0, Us )+ D} Yo = Y5, U Yo,

Vo = {L‘a (y)v Ya (y’ t)v YG}
consists of the function ¢o (¥) & p® of the vector ¥Ye (¥, )&y and the set Yo (_ . We construct
O (Vo) = {t 4o (4, ) E Yo} ta (Va) = inf By (v4)
Ya (Vo) = Yo (v, ta (va))s €a (V) = ¢4 (¥a (va))

0. (ve) = {t 1t [0, t, (v)]}
If 8, = @, then ¢, = ¢, = co.
Now for the set

The set

Uy = {01 Ye,1 (¥, 1), Y4\ YG}

we compute i, (¥) = to (vs), ¥1 (¥) = Ya (V). We construct the vector s, ; (¥), i.e., the result of
the jump y— ys ; (y)

@i (¥o,1) = 2 + Ai (V) pg,is Qs (Us,0) = Wis — I Pri |y @pgi (¥s,:) =0
ay (¥s, 1) = a0 (¥)

Yiw (4, &) = lim gy, (y, t 41,9 as (=1t~ 40
Let 41 () EYs,: \ Yo,5 then 1, (y) = ts,; (y), while the jump
Y= Yo, i (¥) = Ys,: (Y1) £Or py; = us ¢ ()

The function us ; (y,) & Us,; (y) is unique. The next jump is constructed by analogy. Such is
the description of the motions ¥, (¥, t). We write them out in greater detail

Yo (U 1) = Yo,0 (4 &) = Y0 (v, 1) fOr t £ [0, 1, ()
U (1 () + 8 = g (9v.: (41 (9)), ¥)
for t < 0, ¢, (3 (y)) etc.
We describe the game's symmetry property by denoting 2z =z, — 2z, a,(y) =z, ¥, (y) is a sym—
metrical vector
@uin (Y2) = —2i,10 8p,z,4,1 (¥2) = —Pz, 1,15 @ (2) = a, (y)

We assume that the payoff function r(2)>0 is convex in z and corresponding to the symmetry
equation
7 (ax (¥ (4, ) = 1 (az (9o (42 (), 1))
for t& O (2).
We shall reckon that the set & = {z|b, (2) = b, (z) = 0} is known and we shall carry the

construction out for TE E =X\ & Let §=X. We denote ¥°(8) ={yiz= 8} () y. We consider
the series of sets and operators
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Ve = {ca (¥}, ¥a (¥ 1) Y

Po (2} = {p L U & Yo} = Po (W)

Za (Va) =7 fa, 1 ({ea (4} ®a (£)])

243 (x) = Qg (’/) = Qg (va) = Qa, 1 (Ua)
Lp (va) = fo,u ({ag ( (. 1)), 8. ()))
o (¥} = L4, 1 {va)

& wa) = fo, 1 ({op () g (0O

e

B0} = f2 ) Do o (2) == Ey o ()}
o a) VB b, 1\ SV 1 ARy
v = {2 1Y E Vo, ¢ & B (va)}

These operators will be used below. We begin with the set
wy g = {r (J)), o (¥ 1), ?0 (’é}}
YE ={ylr>0 & &)
and we compute the programmed maximum ;% (2} /2/ and the operators
ag (W, 8} = a; ¢ (@ & (%, 8} B (w9
ko () = Wy, 1 (¥} Wy () = fi,. ({a. (¥ (g, ) 8, (W, 5)})
We consider the set f, = E(wop N {z]z>0} and we compute
En = fo,1 ({~ha (), Lo, {wy, D)
Op, (&) = Ly, ¢ (W p)
In many problems the set

“z{xixﬁgai U],h(‘x)"f:o}

ard

Let
Wiy = a0 (2, B W, 1 10 Gl 10 (B) = 70 (Ea)
The set 7,° = vy;: [} 75, ¢ consists of two sets

e = {y ke () = 0, & &)
Yoo = Y|Pt o | = | Puyr, 2 178 =0, by () <0}
It can be shown that the set
@ ={plyen G+ fox 2=t
We construct the sliding function & (¥} and the sliding set §

b(y) = 1nd {11 € 8 (Wy,0), s (o (5 0) <O} for ye= g
b (y) = sup {£ |2 = Oc (Wi, p) @ (3 (9 2)) = O} for y = vz
Iy =0, ve= 70 (&)
The set § yields the motion
B0 =yt it
We describe these motions by forming the functions and sets

A=peis BlEw=F1rLE
B, vy =h{pu) + Bl u)

Up= U@ N {eif@ue) =0 ju,y <
wy = fo,1 ({ha (¥, w)y U (2)})

en (y) = {0y (4, WY | u = Wy 5 (1O}

To determine A = }, we compose the set
Bs (1) = {th | & () = My @0 (31} = a0 (), w2 (1) & Uy (2)}

By p! we denote the collection of single-element sets and we let {' = {z, 12, = 0). We assume
that the motion ¥, (y, £) begins with a jump

¥y () =8 (1 C et
and henceforth corresponds to the eguation ¥ = & (). We denote
8y = 1,0 (Ba) \ B 82 = 6a, Yo, = Jp (3 1)
Yo,2 = Yp (¥, 1)y da,y = do,2 = d (w,,p) = do, 3
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three sets and we "glue"
we,: = {do,: (z), Yo,: (¥, 1), 8:)
8, =06, Ubyi=1,2,3

into the operators ws e = f, (Wz,0, Wy0) for Ye s (¥, t) = yg,2 (¥, t), and we as well "glue" themotions
Yo,i» i = 2,1, obtaining the motion ys s (¥, ). The set

wy, 0 = {do, 3 (), Yo, 3 (¥, t), 83}
and the motion Ye 3 (y,t) are specified by the equalities

fa, i (¥} = 1o (wy,0)
Y =limyp 3 (.t —1,° as £,°— 40
Ys,0 (¥, 11° + 1) = i 0 (ys 1)
for y&= 6, t=10,1,,, (y5), i =1, 2
These equalities uniquely determine the motion ¥ 2 = Yo, 3 (y,¢). To the set

Wy, p = Wy, 3 = {a (wl,ﬁ)v Y. 2 (y7 t)! ’YIO (§a)}
corresponds the function
% (x) =0, = E°
g () = a5 (2), * & & (Wy,p)
o, (7) = o, (7 (7)) = ag (wy, p)
T & (Wi,p)
7 (x) = ax (Y2 ()
In a number of cases it turns out that the function «,(z) 1is a solution of the problem.
3. We construct a verification scheme. We denote
xs (¥) = ax (ys,2 (s, 1 (), Ba (2, w) =
Fu (00 (%))
wia = fi.; ({Ba (2, ), U (2)})
Ap i =A{z | w4, (2) (—1)n > 0}
P6=Ps,1 X 5,20 Po,i ={Pe,1 ]| pr, 1| <pa, 3}
wi o6 = fi,; ({2 (5 (1)), @5 (2)})
Let & &E& and let the function p,(z, t,) be the distance of point z to the set T, We write
out the sets and functions
Ta, i (@) = po (2, Ay, 3), Xs, i =
{21 Wi 6,5: 50" = {2}z = 0)}
Xoo = A{x | 75,: (@) = pa (x, E\ Xp, 1) > &)
Up i = U (2) for 1 E A4, ;
Ui ={ulfu(ra,: () =0} N U (2), 2= Ay,
The set

Up,i = Usp,i X Uy p

Wi ={ujlue U, (@)

Ui, i = {u:i 1 Uj o (@, w)) = &)
enables us to compute

Wg,; = fi.j ({ﬁa (x, u), UD,i (‘Z)})

The function ;6 (2) € U, , (2), where

Uo ={wl(luy el =1, 2 X, )V (uE U (2) for
rE X} {ui lu & wi 0 (2)}
Ui, 0,1 (&) = {wi, 1 | s = w, o (2)}
We assume that the function u; 4 (¥) is continuous for z & A, ;, while the absolute value of
the function i, e,1 (%) is continuous for all Z. We consider the sets Ba,i = {z [ra,s (x) — e < 0}
and the vector ,,j specified by the equalities
T ik (1) = e+ (804/2) (—1), k=1,2,3
@y (21,5) = a, ()

We write out the strategy-sets
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v® = {ug, i (20), &:° (20}
£ (‘Zl)—{zlzl.l (x) E Ba,i} for 71 =B, ;
Bl a) = {zlle —a | —e<< 0, wya() = By, 2, By,

% (zy) has been defined for z & §,°(x;) by the formulas

The function ug ;

us,i® (29) = Wi, 0 (21,1 (1)), 2, & By,
ug, " (29) = Ui, o (21,2 (), 71 E By,
We compute
Ba,i () = Wi 61 (2), = Xs, 5
Pa,i (@) = Wi 5,1 (@), z & Xp s
D — {x{ P, (2) = Pg, o (x) = 0}
We investigate the set w;® = w; for v; = v;° (z,). We denote by C,, ;(z,) the admissibility set of
player j for v; = v;° (z,) and we construct the set
o = {ag (2), x, lw% ], {z T — 1 T Ve> 0}, z,lw’ tle X, ({2, v, (3)})

We can show the existence of the function C(;(z) > (0 bounded for z& (, ; (z;) and corresponding
to the estimate

(_1)i+1 (O-a (Ia (wm)) — O (xl)) <\ Ci (1‘1) V;
This estimate permits us to assert that the equalities
by (x) =+ by (x) = ota (2); Vo, 1 (20) = v’ (20), 20 E Dy X D,

are valid in a set D, et for which the inclusion 7, lw;°, tl & D, follows from the inclusion
& D, for t <L 1. Thus appears the verification plan.

4, Let the points' masses m; == 1, £ be coordinate vectors, gy be velocities. The points
are attracted to a fixed center with a force inverse to the square of the distance to the
center. The control forces ;' — U;; + U; s+ U; 3 For u;® =0 the points move along an el-

lipses in the plane [. If the forces u;’s: (), then they lie in this plane. By y; we denote
the polar angles of the points I; = (g, g/). Let z; = z; (I;, ) be the first integrals of the
linear equations of the perturbed motion closest to the ellipses of motion when u; = 0, while
z; ({3, 0) = ;. Let u; (% u; " be the projections of the forces onto the radius-vector r, i and

onto the transversal 1, ;. We take the equations of motion in the form z; = b; (1) ;"

bi, 2 (1) u;,»°. The control set is

p c{ulees Ux), b,°(1) = (b (D) bi2 (W)l us,; for i = 1,2,j <1,2,3}
The parallelism condition for u; ;|| 6® is mechanically trivial. As a result the controls u;, j
can be made scalar and we can take the equations in the form
w, ;M a; (1) =16 (1) |, 2" = w'a; (V)

e shall examine two problems and two payoff functions r, (r), ra(x),ri(x) = jz; z =
(22 — 2,); ry (&) = (min ||z | — 2nk | for k = 1,2,..)
We commence with the problem having the payoff (x). The set E,° = {z )z > 0, & g%, while

the vectors Pa i &= My pe =M, pr 10, gl

@ = Api 1 pe s =1 P (18> 00 pe = 10, py )
| P ia b 1}
U= ¢ X e
Let us briefly describe the motions Y, (¥. ) for e;,==2|py, i 2 |"". At first we compute

i, = fr,; ({a: (t), 0; (@), a® (v) = 0,5,1 (7)
tis () = ti s (t) = inf @; 4, 5 (1)

e, 1) = S i(syds for i,j=1,2

Ly
¢i,3(2, 1) =0 forte= [0, t; 4 (1))
¢i, 3 (z, 1) = a;,° (1) for t < [t;,5 (x), 1
a, i (yb (yv )) = Ki1 € (xv t) +
€iu (Y) o2 (2, 8) + pr, i€y 4 (7, 1)

For z & gt (w, ﬁ) the best motion g, (z,?) has the form
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Ze (Z, t) = Oy (yb (y’ t)) for
P E La, 2 (wy,p) Ep*
Ze (i, t) = 4a, (.’L‘, (Z, t)) =
(a; (ys (s ¥) forpe, i = Wi,
and for €, i =¢,i(z) =V i 2lc;,2(z, 1) when zEE
We pass on to the analysis of the special sets Fii=1,2,...

Fi={zlzE E, Mo, 2 = U2, 3 = 0}
and we compute

€, i = €g, i ,
ho (z) = he (2) for Mia=Wy,3 =10
F11:F1ﬂ{x[he(z)>0),

ve=Fi N {z1h (2) <0, ko (2) >0}
F1,3={z!ho(x)<0}ﬂF1

In sets F,,, F,, the set

’

P (7) = Lo 2 (wp, o) N {Pllpu.i,1 | =1}
for z < F, ;

¢ (2) = p* for TEF"=F,, U Fi,2
€i, e (I) =2 l ap, pu, i.Z((pe (1)) l 1

and the motion
z, (z, 1) = ax {y (4, 1) | P & @ (1)}

has been defined. For z & F, ; the motion z,(x, t) is unique; however, this follows from com-
plicated computation rules and not from the essence of the problem. Furthermore, other motions
with the same result exist since the function «, (z) is independent of z when z & Fy ;. By B,

we denote the whole set where gu, (z)/0z = 0. z
z Z;
a, %3 z / a;=a;
z 5 " Lp=1.4

a, (IR
a, /‘\
4 > /A

a,,,a,,zllb,f,”,,zb,,, o 4y, 8 by by, ¢

ig.

NN

- 75
s

4,0, 05 0, @,¢ G(77) L) Gle)=07 b)) tyftf) T’ ¢ T
Fig.2 Fig.4

Figs.l1— 3 show the curves 2z, (z; 1) = a; (. (z, t)). on Fig.l (the case of My s = 0) the func-
tion e, (x) is a zero, with respect to the variable €,,, of the function j, (y). In the case
at hand the minimum operation is not needed. The points ;, 23 & F,; ; of the motion z, (z;t) are
parired by the tangency condition {they are not unique). For zr & Fy 4 the function g, (z) is
independent of 2z

%o (7) = o (23) for z; & {x |2 = pq (x, F1,2) = 0}
The sliding set 0, = {z )z =0, z& F1 5 ¥ (2) = (9, (2), ) € 61} twice accepts the motions
2, (2, 1) for z; € Fy,0 T =1, 2.

Fig.2 shows the case of W;,,=0. We denote p; (%) =a, ¢ 1(9,(x)); the set 8, = {z |t ,(v) —

t=0, h, (x) <0, z& Fy,}. When z 0, the momentum p;,.(z) is zero of the function £4(y) in
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the variable pg .- To the sliding set 8, = 0, [} {z | p; .(x) = 0} corresponds the motion z, (z
{) and the control

Uy, 3, e (.Z‘) = {ul,l l ﬁz (1’, u) = 01 U & Wy (ye (I))}

The set 0, borders on the two sets

85,1 = {z | T — t5,, (1) > 0}
B2 = {7 [ ta (y. (2) = ¢ (2) > 0}

A transition with sliding onto the motion z,{(z,f) >0 is accomplished on the boundaries G, ; =
fr8; of sets frf, ; ()8, .- We emphasize that the motion z,(r,f) can return again into set @,
This return takes place smoothly (with tangency) through the boundary G, , and by an impulse
through the boundary G,;, The set Fy,={z|ze<F;, 1y, >0, yy,3>0} is complex in that it
contains the operation of minimum with respect to the variable py , . but has no principal
differences from the sets shown in Figs.1l,2.

The set F, = {z | p,,, = W, 3 =0} contains a dispersal surface /1/. We denote

al(z, t) = (@, (z) for 2 =0, T = 1)
w. = o ({edz, 1), 8.))

oy (x) =W, (x)q Hyp = Qg (.t) — o, (1‘)
t, =1 —infw,,

The result has the form

2 (I) = Qg (x) for r &= g; (le ﬂ) =
{z 1%, (@) >0} = 4,
@, (¥) = a, (z) for x & B, = F, \ 4,

The set Ag={z12>0, %, (x) =0}, B,; = B,.\ A, is a dispersal surface. For z&B,, the
controls U, . {r) =u;4,.(x) =0 for i=1,2 and the motion turn about arbitrarily in the set
B, i up to the boundary. In Fig.3 the set B, is shaded (solution of the first problem).

We turn now to the second problem for the case when the required unperturbed motions of
the points are circular orbits with a common center. We construct the vector a¢(z) (of the
permutation of the resources and the origin 00— m)

a; (zg) = 1o — |z, @y () =pe;; k=i, =1, 2
i=1,2,3
We compute the function
Q .
1§ (%) = min (2, (2), |7 — ag (2 (2)) )
and the function B, ;= B?_g(x) for |z|<m, which has the period = in|z |.The function By, g () is
the solution of the second problem.

Typical motions of this problem are shown in Fig.4. The set B, . is analogous to set B,.

5. Suppose that a man z, o= (cos0, sin §) can move with velocity 8 = w,= p  along a circle
of unit radius with center 0’ at the origin of a fixed system gz, ¢’, 20 while a lion % o p®,

z, ¢ = % can move over the plane with velocity ©; in addition

23, 0 = (c05 8, sin 0), 2,° = (21,1, %1 ,2) = Za,0 = Z1,0
The problem is very similar to the well-known Littlewood problem. We take it that Wi, 3 = pa s
= 0 and we write out the motions z, (s ) for z=§ + (¥ p) in the variables 2° = (z,0,%,,) and the
variables z°= (2, ,,%, ) in a moving system. We write out

ni (2, 1) = (hi,1+ Vi, of0 t, 0 (2) = ni(z, 1)

5 (2) = 2m (&) — 71,0 = (cos (ms® (@), sin (m? (@))) — 7, o

jn (2) = 2o () | 2n (D) |, @z, 9, o (xe) = (cOS (ng (z, 1)), Sin (ng (z, 1))
Az, 1,0 (%) = 23, o+ ny (z, 8) I (2)

Zg,e = (87,1, 0 (z), az, 2, o (z4))

The set §;(w; g) and the functions &,(y),%,(z) play an analogous role in the construction. We start
the analysis with details.

hy=mn—v —lzllg, g=p, 1+ Vi, 1, 2= |z, olsin(n —v)
T — v = arc cos (z, o2, n)/|zx,o||zz,o|

D ={z|z ek, Wi, 5= Mg, 2 =0}, @y,5= @y N {z | ke (x) > 0}
Dy 5 = {z]h(x) <O, by (2) 20}, Oy, 3= D ) {z]hy () <O}
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The angle v is counted counterclockwise from the vector 4 up to the straight line Z,’ drawn
from O’ to the man. For ze @, ,U d,, the motion z (s, ?) is unique. The motion 3,.{zt) for
z, = ®,, is shown in Fig.5.

z, .
1
7” "
z, Z,
Ty
s
;:\\\ Z;
o' \)Qﬂ, fz
N\ 0, ”Z 5
a5 )
5 " "o_r
Fig.5 0z, 0z,
!
Zf ZI/ Z”I
5 . 1 1
Iz
T3 \ \_/ ! I
i~ p
2
\___/
. 2 4.7
r)
a
// ¢ ZZ’
I I
c 0 P0s% g Fig.8
Fig.6

A deformation of the motion is connected with sliding over the set 6,. The lion's slid-
ing is rectilinear in the moving axes, one of which is the axis Zy , and curvilinear in the
fixed system. The motions %,.(%:t) for #;, 2, z3 & ®; ; have the lion's rectilinear trajectory. The
motion Zo,e(# ) for z; = ®; ;3 has the lion's rectilinear absolute trajectory directed toward
the point 7 until 2z, . (z,t) = ®; 3. This segment a;, 0 is shown in Fig.5. Fig.6 corresponds to
motions in the moving axes Z,,0',Z,/. The set

D, = {Illlz,z:OwIEE}
The motion z.(z, ¢) for
ZE@z,lz {x ke (2) 200 N D,
have been described at the beginning of the example. When
zeE Dy o= {z|he (x) <O} ) Dy
the typical motions shown in Fig.7 appear. The point 0" is the point of absolute minimumwith
respect to 2’ of the function %, ¢ (z). Then the points =z,1,z; lie to the right of point 0". The
motion z,(z,#) in the moving system Z,',0',Z, leaves the symmetry axis Z;’ and returns to it
again.
The set
@y = {z|p, 1= Myy = 0}
picks out the set
£, ={zfz=0,z Dy}
The set
Ya={ylz =8, P, 0= % [P,1]l =1, Pr,1l] 27}
corresponds to the second player's zero control u,,=0 .For y&y; themotion zp (y:8) = ax (yp (¥, 1)),
the symmetry axis is fixed. We compute the operators

Ce =f ot ({(11’ 13 (zv (95 1)), 91 (=)})
L= fay1 ({ge,l (), {plp =7vs}})
0y () = Ly g (2), Ty g (2) = T — (inf g | (D Eor p = G, (@)

and we construct the sets and the functions

E, = §; ('-”1, B) U & ag () = % x (r)forz = Ec ('”1, e)
oy (z) = %9 (@ forzes, Es=EN\ &
Wy, 8= {Oto (@) yp (3, ), ¥° (E5)}
o (1) = o ¢ (forz e § (wy g)
%g () = a (wy g)for = € Py \ §; (i, p)

The formulas written out give the answer when z < ®;. The motions are shown in Fig.8.
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